Have a happy new year!

Picking one day to make resolutions for the new year is not a good idea. We can do this any day of the year, and indeed we should resolve to make change whenever we recognize that it’s a good idea. What’s special about today is that we can take it as a reminder to look back, to look forward, and see our lives in a different scale of time than what we do on the day-to-day. What have you been up to for the last 365 days? Has it been a good year, are you making the most of your limited time?

I’m thinking about how it’s gone as I look toward the future. This year I’ve found a job and an apartment of my own. I’ve met many wonderful people (including Kaitlyn!) and reconnected with old friends. I’ve traveled, practiced old hobbies, and tried new things. I want to thank all of you for being a part of this, and I hope you all have a wonderful new year. Go out and make 2014 the best year yet!

And don’t forget to take pictures!
http://flic.kr/s/aHsjPRDsUQ

Lasers, sensors, cameras! A 3D scanning backpack for UC Berkeley (part 1)

About a year ago I was contacted by a professor at UC Berkeley who had found my resume online. Her team had produced a backpack device that was capable of collecting data to generate 3D models of internal spaces, and she needed a new backpack designed that would be smaller and lighter. I took this on as a part time project while I was looking for full time work, and it was a fun challenge. I’ve talked about this project in the past, but they finally went live with the backpack so I thought it was time for a post.

You can read all about Professor Zakhor’s original backpack on the EECS website. This is what they had before I arrived. It weighs over 70 pounds, is built to hold an changing array of sensors and cameras, and I understand that it went through many iterations and changes as they developed the software techniques that could turn the data into usable 3D representations of internal spaces. My job was to provide a compact, lightweight platform that provided stable and well defined positions for a suite of sensors. Many of the sensors needed to be adjusted to different angles to accommodate users of different heights, or movement through different environments.

The sensors on the version of the backpack that I designed include:

That’s it for now, but it’s possible to attach other pieces as needed. I sourced an embedded PC that seems to have the processing power to shove all the data from those sensors into some SSDs, and the entire collection of parts is powered by several lithium ion batteries. The batteries are an off the shelf solution, and have a good amount of intelligence and safety built in. We run the batteries in series to create a voltage from about 18 to 60 volts, and a DC-DC converter regulates this to a main system voltage of 24 volts.

Here’s a creepy render of the system on a mannequin.

render

Check back soon, and I should have an explanation of what each of the sensors is doing, and how I designed this thing!